初中数学七年级题库4.21:实数、绝对值、开方化简的两道经典例题
解析:已知x的取值范围,那么\(\displaystyle \left| {1-x} \right|\)就可以去掉绝对值符号为1-x,而\(\displaystyle \sqrt{{{{x}^{2}}}}\)也可以去掉根号为-x
解:∵ x≤0
∴ \(\displaystyle \left| {1-x} \right|=x-1\)
\(\displaystyle \sqrt{{{{x}^{2}}}}=-x\)
原式\(\displaystyle =1-x-\left( {-x} \right)\)
\(\displaystyle =1-x+x\)
\(\displaystyle =1\)
解析:这道题里面有一个隐含条件:\(\displaystyle a-b\ge 0\),知道这个条件后就可以去掉根号和绝对值了。
原式\(\displaystyle =\sqrt{{{{{\left( {a-b} \right)}}^{2}}}}-\sqrt{{{{{\left( {b-a} \right)}}^{2}}}}-\left| {b-a} \right|\)
\(\displaystyle =\left| {a-b} \right|-\left| {b-a} \right|-\left| {b-a} \right|\)
\(\displaystyle =-\left| {b-a} \right|\)
\(\displaystyle =b-a\)
